Question Booklet Series: A

Question Booklet Serial No.: 211778

CET (UG) – 2021

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	(In Figure)	(In Words)	
			150
O.M.R.	Answer Sheet Serial No.		
Signature of	Candidate:	Signature of Invigilator:	

SUBJECT: PHYSICS

Time: 70 Minutes

Number of Questions: 60

Maximum Marks: 120

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO.

INSTRUCTIONS:

- Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- 2. Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- The medium of examination shall be English only.
- Please check that this Question Booklet contains 60 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- 6. Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question Booklet.
- 9. Negative marking will be adopted for evaluation i.e. 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- 10. For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.
- 11. For rough work only the blank sheet at the end of the Question Booklet be used.
- 12. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- 13. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 15. 20 minutes extra should be given to the visually handicapped/Person with Disability (PwD) for each paper.
- 16. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 17. Tele-communication equipment such as Cellular phones, pager, wireless, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. **Use of calculators is not allowed**.
- 18. The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

1.	Which one of the followings has same dimensions?							
	(A) Force and Torque(C) Potential Energy and Force		(B) Torque and Potential Energy (D) Linear momentum and Planck's constant					
2.	The SI unit of activ	vity of a radioactive s	ample is					
	(A) Curie	(B) Rutherford	(C) Einstein	(D) Becquerel				
3.	A boy standing on the top of a tower of 45 meter height drops a stone. Assuming $g = 10$ ms ⁻² , the velocity with which it hits the ground is							
	(A) 30 ms ⁻¹	(B) 20 ms ⁻¹	(C) 25 ms ⁻¹	(D) 40 ms ⁻¹				
4.	A ball thrown ver The total displacer		an initial velocity of 9	0.8 m/s returns in 4 second.				
	(A) 9.8 m		(C) 19.6 m	(D) 4.9 m				
5.	The position x of particle will be zer	a particle varies wit ro at time t equal to	th time t as $x = at^2$	bt ³ . The acceleration of the				
	(A) 2a	(P) 1	(C) a	(D) $\frac{a}{b}$				
	$(A) {3b}$	(B) $\frac{1}{b}$	$\frac{(C)}{3b}$	$\frac{b}{b}$				
6.	A missile is fired the range of the m		with an initial velocity	$y \text{ of } 20 \text{ ms}^{-1}$. If $g = 10 \text{ ms}^{-2}$,				
	(A) 40 m	(B) 20 m	(C) 80 m	(D) 60 m				
7.	m height. How los	ng the ball take to hit		the top of a building of 19.6 (D) 2 sec				
	(1)	(2) (2 37						
8	(B) No work is do (C) Kinetic energy	l forces are non-conse	nt is perpendicular to the tic collision	ne direction of applied force				
9				y brakes over a distance of 6 r, the stopping distance is (D) 30 m				
			A SINTE OF SALES	Sister What should				
1				Friction $\mu = \frac{1}{\sqrt{3}}$. What should				
	(A) 30°	(B) 45°	olock just slides down (C) 60°	(D) 90°				
1	1. If the linear more (A) 50%	nentum is increased by (B) 100%	y 50%, then kinetic end (C) 125%	ergy will be increased by (D) 25%				
1	12. The work done where x is displa		le force $F = x (1 + x)$	from $x = 0$ to $x = 2$ meter,				

(B) 8 Joule (C) 10 Joule (D) 12 Joule

(A) 6 Joule

the ratio of acceler (A) 1: 2	ration after and befor (B) 2:1	e the speed is changed. (C) 1: 4	(D) 4:1
14. A particle moves in The acceleration of		cm with constant speed	d and time period of 0.2π s.
(A) 25 ms ⁻²	(B) 5 ms ⁻²	(C) 20 ms^{-2}	(D) 15 ms ⁻²
(B) Only kinetic e (C) Only moments	e energy nor moment nergy is conserved		
two balls while in (A) Depends upon (B) Depends on th (C) Depends on the		of the balls balls	of the centre of mass of the
17. If a person standin (A) Remain same (C) Decrease		stretches out his hands, (B) Increase (D) None of the	the angular speed will above
18. If a sphere is rolli (A) 2:7	ng, then the ratio its (B) 1:2	rotational kinetic energ (C) 2:5	y to total kinetic energy is (D) 5:7
time periods of ro	tation will be		th is 1:4. The ratio of their
(A) 8:1	(B) 1:8	(C) 1:4	(D) 4:1
		the surface of earth (ra	and the same of th
$(A)\sqrt{2gR^2}$	(B) \sqrt{gR}	(C) $\sqrt{2gR}$	(D) $\sqrt{gR^2}$
(B) Kinetic energ(C) Both kinetic a	y is maximum and p	otential energy is minir otential energy is maxir s are minimum	
22. The total energy energy when the	of the body execution displacement is half	of its amplitude is	notion is E. Then the kinetic
(A) $\frac{E}{2}$	(B) $\frac{E}{4}$	(C) $\frac{\sqrt{3}E}{4}$	(D) $\frac{3E}{4}$
23. One-fourth length remaining spring (A) Exactly 0.75 (C) Exactly k	will be	(B) Approxima (D) Approxima (2)	

13. A body is moving in a circular path with acceleration a. If the speed gets doubled, find

()	A) Stress acting on itB) Strain produced in	increase its length four				
1	A body floats in water in oil, 60% of its volume (A) 1.5	r with 40% of its volume remains outside oil (B) 1.2	me of The	e relative density of	en the same boof oil is (D) 0.5	dy floats
(Bernoulli's theorem is (A) Linear momentum (C) Energy	a consequence of cons	(B)	tion of Angular moment Mass	um	9:5
(According to Maxwel velocity is (A) Greater than the m (B) Equal to the mean (C) Equal to the root m (D) Less than the root	velocity nean square velocity	of ve	elocities of molecu	ales, the most	probable
9	The temperature of a 1°C when the pressure (A) 200 K	gas contained in a cle of the gas is increased (B) 100 K	d by	vessel of constant 1%. The initial ter 100 °C	nt volume incomperature is (D) 273 °C	reases by
29.	The thermodynamic p (A) Adiabatic	rocess in which no hea (B) Isobaric		ws between the sy Isothermal	estem and surre (D) Cyclic	oundings is
	Specific heat of a gas (A) Infinite	undergoing adiabatic (B) Positive	- 1011	ge is Zero	(D) Negative	
(Two black metallic sp energy radiation as (A) 1:1	wheres of radius 4 m, at (B) 4:1		0 K and 1 m, at 40	000 K will hav (D) 1: 2	e ratio of
	wavelength at tempera	wavelength λ at a ature 3000 K will be	tem	perature of 2000	K. Its corre	sponding
	$(A) \frac{2\lambda}{3}$	(B) $\frac{3\lambda}{2}$	(C)	$\frac{4\lambda}{9}$	(D) $\frac{9\lambda}{4}$	
33.	When two sinusoidal produce	l waves moving at ri	ight	angle to each ot	her superimpo	ose, they
•	(A) Beats	(B) Interference	(C)	Stationary waves	(D) Lissajou	s figure
34.	The equation of long wavelength is	gitudinal wave represe	ented	by $y = 10\cos\pi$	(50t-x) cm	. Then it
	(A) 20 cm	(B) 50 cm	(C)	2 cm	(D) 5 cm	

44

			celerated from rest it travels a distance		ric field of
2Eq		2Eqs	2Em	_ Eq	
(A) $\sqrt{\frac{2Eq}{ms}}$	(B) 1	m	(C) $\sqrt{\frac{2Em}{gs}}$	(D) $\sqrt{\frac{Eq}{ms}}$	
V			1 43	VIIIS	
	tors, one 4 pF ar . The energy sto		pF, connected in ors is	parallel are charge	d by a 100
(A) 1.2×10^{-1}) ⁻⁸ J (B) 2.	4×10^{-8} J	(C) $5.0 \times 10^{-8} \mathrm{J}$	(D) 6.0×1	0-8 J
Which one (A) Length (B) Length	ng four wires a of them has high = 50 cm, diamete = 100 cm, diame = 200 cm, diame	er electrical r er = 0.5 mm ter = 1.0 mm		and are at same te	mperature.
	= 300 cm, diame				
which passe	es through the ga	lvanometer, i			tal current,
(A) 8%	(B) 9	0%	(C) 10%	(D) 90%	
field B at the (A) B/2	e mid-point. Wh (B) If f magnetic field	nat will be the and magnetic and radius is	ring 2 <i>i</i> in the same of field when 2 <i>i</i> curred (C) 2B or moment at the cere doubled the ratio we (C) y/2	ent is switched off: (D) 4B attre of a current ca	?
30 PM W			200020	The state of the s	
(A) A force	only but not a to a torque nor a fo	orque	rm magnetic field. (B) A torque or (D) A force and	aly but not a force	
42. The unit of	intensity of mag	netisation is			
(A) A-m	(B) A		(C) A/m	(D) W/m	
			ance of an inducto current of 0.9 A flo		onnected to
(A) 2.44 H	(B) 3	3.66 H	(C) 4.88 H	(D) 6.0 H	
44. The equiva	lent quantity of i	mass in an inc	ductor circuit is		
(A) Charge		Potential	(C) Current	(D) Induct	ance
45. A resistant drop across (A) 13 V	e and a capacito the capacitor is (B)	5 V and acro	ted in series with a ss resistor is 12 V, (C) 7 V	an AC source. If then applied voltage (D) 12 V	ne potential ge is
(A) Low in (B) High in (C) Low in	used in an ac cirductance and high ductance and low ductance and resiductance and residucta	th resistance w resistance istance both			

	(A) Greater than that (C) Smaller than that		(B) Equal to that of t (D) Independent of t			
48.	18. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm. The power of combination is					
	(A) + 6.5 D	(B) - 6.5 D	(C) + 1.5 D	(D) -1.5 D		
49.	If the ratio of maximum and minimum intensities of an interference pattern is 25: 1, then the ratio of amplitudes of the two interfering waves will be					
	(A) 3: 2	(B) 5: 1	(C) 2: 1	(D) 13: 12		
50.	Transverse nature of (A) Reflection of light (C) Polarisation of light		y the phenomenon of (B) Diffraction of li (D) Dispersion of li			
51.	travelling in free space	ce is given by		wave of wavelength λ		
	(A) $\frac{B^2}{2\lambda}$	(B) $\frac{B^2}{2\mu_0}$	(C) $\frac{2B^2}{\mu_0 \lambda}$	(D) $\frac{B}{\mu_0 \lambda}$		
52.	(A) Is independent of(B) Varies linearly w(C) Varies linearly w	c energy of photoelect energy of incident radith intensity of inciden ith the wavelength of in ith the frequency of in	liation it radiation incident radiation			
53.	If $^{238}_{92}$ U emits 8α -pa	rticles and 6β-particle	es, then the resulting n	ucleus is		
	(A) $^{206}_{82}$ Pb	(B) $^{210}_{82}$ Pb	(C) $^{212}_{82}$ Pb	(D) $^{216}_{82}$ Pb		
54.		number changes		nber		
55.	voltage, then (A) Current remains	constant while voltage constant while current age increase	e increases sharply	s equal to the breakdown		
56	change in the base	operated in common e current from 100 μA t to 25 mA. The current (B) 75	o 300 μA produces a	with $V_{cc} = 9$ V such that a change in the collector (D) 25		
14		(5)				

47. In optical fibres, the refractive index of the core is

- 57. The total energy E of a subatomic particle of rest mass m moving at non-relativistic speed v is

- (A) mc^2 (B) $\frac{1}{2}mv^2$ (C) $mc^2 + \frac{1}{2}mv^2$ (D) $mc^2 \frac{1}{2}mv^2$
- 58. At what speed would the relativistic value for the linear momentum of a particle would be twice the classical values?
 - (A) $v = \frac{\sqrt{3}}{2}c$ (B) $v = \frac{\sqrt{5}}{2}c$
- (C) v = 0.5c
- (D) $v = \sqrt{\frac{3}{2}} c$
- 59. If NOT gates are placed at the input terminals of two input NAND gate, it behaves as

 - (A) OR gate (B) AND gate
- (C) XOR gate
- (D) NOR gate
- 60. Which one of the following does not depict the correct link between technology and physics?
 - (A) Optical fibres ↔ total internal reflection of light
 - (B) Nuclear reactors ↔ nuclear fission
 - (C) Electron microscope ↔ wave nature of electrons
 - (D) Electric generator ↔ laws of electromagnetic induction

X-X-X